Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ecol Appl ; 32(3): e2529, 2022 04.
Article in English | MEDLINE | ID: covidwho-1620116

ABSTRACT

The COVID-19 pandemic has disrupted field research programs, making conservation and management decision-making more challenging. However, it may be possible to conduct population assessments using integrated models that combine community science data with existing data from structured surveys. We developed a space-time integrated model to characterize spatial and temporal variability in population distribution. We fit our integrated model to 10 years of eBird (2010-2020) and 9 years of aerial survey (2010-2019) Mottled Duck count data to forecast 2020 population size along the western Gulf Coast of Texas and Louisiana. Estimates of Mottled Duck abundance were similar in magnitude to estimates calculated using previous methods but were more precise and showed evidence of a declining population. The spatial distribution for Mottled Ducks each year was characterized by several concentrations of relatively high abundance, although the location of these abundance "hotspots" varied over time. Expected abundance was higher for areas with a higher proportion of area covered by marsh habitat. By leveraging large-scale community science data, we were able to conduct a population assessment despite the disruption in structured surveys caused by the pandemic. As participation in community science platforms continues to increase, we anticipate modeling frameworks, like the integrated model we developed here, will become increasingly useful for informing conservation and management decision-making.


Subject(s)
COVID-19 , Pandemics , Animals , Ducks , Ecosystem , Humans , Wetlands
2.
Biol Conserv ; 256: 109077, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1141628

ABSTRACT

The COVID-19 pandemic highlighted the potential of using data from long-term citizen science projects to answer questions about the impacts of unexpected events on biodiversity. We evaluate the suitability of data from the citizen science platforms iNaturalist and eBird to describe the effects of the "anthropause" on biodiversity observation in Colombia. We compared record distribution according to human footprint, sampling behaviors, overall and conservation priority species composition during the strictest phase of the COVID-19 lockdown in 2020 to the same periods in 2015-2019. Overall participation in both platforms during the lockdown was high when compared to previous years, but records were concentrated on highly-transformed regions, had lower sampling efforts, and fewer species were recorded. For eBird, species composition was similar to that observed in previous years, and records of species of conservation concern declined in proportion to the decrease in overall species richness across samples. For iNaturalist, the species pool sampled each year remained too dissimilar for comparisons. Once differences in observer behaviors are accounted for, data from these platforms can be used in unplanned comparisons of relatively common species, in regions with high levels of human transformation, and at narrowly defined geographical contexts. To increase the potential of citizen science to monitor rarer species, more natural areas, or be used in large-scale analyses, we need to build and strengthen more diverse networks of observers that can further promote decentralization, democratization, and cost-effectiveness in biodiversity research.

3.
Biol Conserv ; 256: 109017, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1116310

ABSTRACT

Shutdowns associated with the COVID-19 pandemic have had extensive impacts on professional and volunteer-based biodiversity and conservation efforts. We evaluated the impact of the widespread pandemic-related closures in the spring of 2020 on participation patterns and rates on a national and a state-by-state basis in the United States in four biodiversity-themed community science programs: eBird, eButterfly, iNaturalist, and Nature's Notebook. We compared the number of participants, observations submitted, and proportion of observations collected in urban environments in spring 2020 to the expected values for these metrics based on activity in the previous five years (2015-2019), which in many cases exhibited underlying growth. At the national scale, eButterfly and Nature's Notebook exhibited declines in the number of participants and number of observations submitted during the spring of 2020 and iNaturalist and eBird showed growth in both measures. On a state-by-state basis, the patterns varied geographically and by program. The more popular programs - iNaturalist and eBird - exhibited increases in the Eastern U.S. in both the number of observations and participants and slight declines in the West. Further, there was a widespread increase in observations originating from urban areas, particularly in iNaturalist and eBird. Understanding the impacts of lockdowns on participation patterns in these programs is crucial for proper interpretation of the data. The data generated by these programs are highly valuable for documenting impacts of pandemic-related closures on wildlife and plants and may suggest patterns seen in other community science programs and in other countries.

4.
Biol Conserv ; 254: 108974, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1039294

ABSTRACT

The COVID-19 pandemic has likely affected natural systems around the world; the curtailment of human activity has also affected the collection of data needed to identify the indirect effects of this pandemic on natural systems. We describe how the outbreak of COVID-19 disease, and associated stay-at-home orders in four political regions, have affected the quantity and quality of data collected by participants in one volunteer-based bird monitoring project, eBird. The four regions were selected both for their early and prolonged periods of mandated changes to human activity, and because of the high densities of observations collected. We compared the months of April 2020 with April in previous years. The most notable change was in the landscapes in which observations were made: in all but one region human-dominated landscapes were proportionally more common in the data in April 2020, and observations made near the rarer wetland habitat were less prevalent. We also found subtler changes in quantity of data collected, as well as in observer effort within observation periods. Finally, we found that these effects of COVID-19 disease varied across the political units, and thus we conclude that any analyses of eBird data will require region-specific examination of whether there have been any changes to the data collection process during the COVID-19 pandemic that would need to be taken into account.

SELECTION OF CITATIONS
SEARCH DETAIL